FANDOM


Ammonite-Render
Ammonites are extinct sea creatures of the subclass Ammonoidea that lived before and in the time of the dinosaurs; they are mollusks. There not part of the family Nautiloid how ever they look like nautilus but not related because Ammonites are in the subclass Ammonoidea not Nautiloidea. Ammonite shells look like snail shells.There very common in Bajocian from the Middle Jurassic period. There's more than 1000 species of ammonites. Asteroceras and Jeletzkytes are ammonites. Biggest ammonite is the Parapuzosia seppenradensis. Placenticeras were also ammonites too some have a Mosasaur bite. Some ammonites come before the Amphibians and fishes from the late Devonian. Ammonites were the only creatures that first live in the Palezic to the Mesozoic. Ammonites died at the same time as the dinosaurs, pterosaurs, plesiosaurs and mosasaurs.

About

Ammonites /ˈæmənaɪts/ are an extinct group of marine invertebrate animals in the subclass Ammonoidea of the class Cephalopoda. These molluscs are more closely related to living coleoids (i.e. octopuses, squid, and cuttlefish) than they are to shelled nautiloids such as the living Nautilus species. Ammonites are excellent index fossils, and it is often possible to link the rock layer in which they are found to specific geological time periods. Their fossil shells usually take the form of planispirals, although there were some helically spiraled and nonspiraled forms (known as heteromorphs). The name "ammonite", from which the scientific term is derived, was inspired by the spiral shape of their fossilized shells, which somewhat resemble tightly coiled rams' horns. Pliny the Elder (d. 79 AD near Pompeii) called fossils of these animals ammonis cornua ("horns of Ammon") because the Egyptian god Ammon (Amun) was typically depicted wearing ram's horns.[1] Often the name of an ammonite genus ends in -ceras, which is Greek (κέρας) for "horn".

Diagnostic characters

Ammonites (subclass Ammonoidea) can be distinguished by their septa, the dividing walls that separate the chambers in the phragmocone, by the nature of their sutures where the septa joint the outer shell wall, and in general by their siphuncles. Ammonoid septa characteristically have bulges and indentations and are to varying degrees convex from the front, distinguishing them from nautiloid septa which are typically simple concave dish-shaped structures. The topology of the septa, especially around the rim, results in the various suture patterns found. Three major types of suture patterns are found in the Ammonoidea: Goniatitic - numerous undivided lobes and saddles; typically 8 lobes around the conch. This pattern is characteristic of the Paleozoic ammonoids. Ceratitic - lobes have subdivided tips, giving them a saw-toothed appearance, and rounded undivided saddles. This suture pattern is characteristic of Triassic ammonoids and appears again in the Cretaceous "pseudoceratites". Ammonitic - lobes and saddles are much subdivided (fluted); subdivisions are usually rounded instead of saw-toothed. Ammonoids of this type are the most important species from a biostratigraphical point of view. This suture type is characteristic of Jurassic and Cretaceous ammonoids, but extends back all the way to the Permian. The siphuncle in most ammonoids by far is a narrow tubular structure that runs along the outer rim, known as the venter, connecting the chambers of the phragmocone to the body or living chamber. This distinguishes them from living nautiloides (Nautilus and Allonautilus) and typical Nautilida. However, the very earliest nautiloids from the Late Cambrian and Ordovician typically had ventral siphuncles, although often proportionally larger than those in ammonites and more internally structured. The word "siphuncle" comes from the New Latin siphunculus, meaning "little siphon".

Classification of the Ammonoidea

Originating from within the bactritoid nautiloids, the ammonoid cephalopods first appeared in the Devonian (circa 400 million years ago) and became extinct at the close of the Cretaceous (65.5 Mya) along with the dinosaurs. The classification of ammonoids is based in part on the ornamentation and structure of the septa comprising their shells' gas chambers; by these and other characteristics we can divide subclass Ammonoidea into three orders and eight known suborders. While nearly all nautiloids show gently curving sutures, the ammonoid suture line (the intersection of the septum with the outer shell) is variably folded, forming saddles (or peaks) and lobes (or valleys).


An ammonitic ammonoid with the body chamber missing, showing the septal surface (especially at right) with its undulating lobes and saddles.


Iridescent ancient ammonite fossil on display at the American Museum of Natural History, New York City, around 2.5 feet in diameter The Ammonoidea can be divided into eight orders, listed here starting with the most primitive and going to the more derived: Anarcestida, Devonian Clymeniida, Upper Devonian Goniatitida, Middle Devonian - Upper Permian Prolecanitida, Upper Devonian - Upper Triassic Ceratitida, Permian - Triassic Phylloceratida, Triassic - Cretaceous Lytoceratida, Jurassic - Cretaceous Ammonitida, Lower Jurassic - Upper Cretaceous In some classifications, these are left as suborders, included in only three orders: Goniatitida, Ceratitida, and Ammonitida. The Treatise on Invertebrate Paleontology (Part L, 1957) divides the Ammonoidea, regarded simply as an order, into eight suborders, the Anarcestina, Clymeniina, Goniatitina, and Prolecanitina from the Paleozoic; the Ceratitina from the Triassic; and the Ammonitina, Lytoceratina, and Phylloceratina from the Jurassic and Cretaceous. In subsequent taxonomies, these are sometimes regarded as orders within the subclass Ammonoidea.

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.